
Developing Structured Libraries
using the Focal Environment

Nicolas Bertaux
CEDRIC/CNAM

292 rue Saint-Martin
75141 Paris Cedex 03, France

Nicolas.Bertaux@lri.fr

David Delahaye
CEDRIC/CNAM

292 rue Saint-Martin
75141 Paris Cedex 03, France
David.Delahaye@cnam.fr

ABSTRACT
We introduce the Focal environment, which is an integrated
development environment, offering functional and object-
oriented features, and designed to build certified components
using theorem proving. In Focal, inheritance provides a suit-
able notion of refinement, allowing us to go step by step
(in an incremental approach) from abstract specifications to
concrete implementations while proving that these imple-
mentations meet their specifications or design requirements.
In addition, inheritance and parameterization offer a high
level of reusability. To highlight these features, we present
a survey of Focal, with a complete example of formaliza-
tion in support. Finally, Focal is equipped with a compiler
producing OCaml code for execution and Coq code for cer-
tification, and we also propose a compilation scheme based
on modules, which is supposed to be an alternative to the
current scheme using records and aims to provide a higher
level view of compiled specifications supplying in particular
traceability. This compilation scheme is not only described
through an example, but also formally.

Categories and Subject Descriptors
F.3 [Theory of Computation]: Logics and Meanings of
Programs; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
Logics of Programs, Specification Techniques

General Terms
Languages, Theory, Verification

Keywords
Focal, Objects, Modules, OCaml, Coq

1. INTRODUCTION
Over the last few years, digital libraries have been the sub-

ject of a recrudescence of interest, probably due to the pos-
sibility of accessing Internet for the great majority of people.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Actually, digital libraries had been introduced more than
thirty years ago, with the Project Gutenberg [14] founded
in 1971 and which aimed to archive cultural works. This
craze for digital libraries can be explained by the numer-
ous advantages they offer, among many others: collections
of materials are dematerialized, which saves space and pre-
serves physical collections; the resources can be simultane-
ously accessed by several users at any time at any place,
as long as a network connection is available; information
retrieval is possible through the entire digital library using
complex patterns of search. There exists a certain number of
digital libraries; some of them propose to archive books like
the Million Book Project [3], some others offer a wide panel of
cultural materials (literature, painting, music, etc) like the
World Digital Library, or even an archive of the Web like the
Internet Archive [15]. In Computer Science, we are in a quite
similar situation (except that materials are already demate-
rialized), where we intend to design libraries of programs or
proofs coming from different languages or formalisms, with
the possibility of making information available and espe-
cially reusable in different contexts. As examples, we can
hold up OpenMath [20], which is an extensible standard for
representing the semantics of mathematical objects, or the
MoWGLI project [19], which aims to manage and publish
mathematical documents. This concern of building appro-
priate libraries is confirmed by the creation of specific meet-
ings or interest groups, e.g. the DML workshops [9] discuss
the means of designing a global mathematical digital library,
while the MKM interest group [17] deals with all aspects of
mathematical knowledge management. Thus, these days,
more and more computer libraries appear, sometimes quite
large (for instance, Google Book Search [5] reached the 7 mil-
lion books in November 2008), and some questions related
to practical problems arise. Among these questions, there
are the structure of the stored information, the maintain-
ability and the evolution of the library, the reusability of
information, and the information retrieval.

In this paper, we plan to address some of the previous
issues in the specific framework of libraries of programs and
proofs. To do so, we introduce in particular the Focal en-
vironment [1, 12], which is an integrated development en-
vironment, offering functional and object-oriented features,
and designed to build certified components using theorem
proving. More precisely, Focal, initiated by T. Hardin and
R. Rioboo with S. Boulmé, provides a language in which it
is possible to build certified applications step by step (in an
incremental approach), going from abstract specifications,
called species, to concrete implementations, called collec-

mailto:Nicolas.Bertaux@lri.fr
mailto:Nicolas.Bertaux@lri.fr
mailto:David.Delahaye@cnam.fr
mailto:David.Delahaye@cnam.fr

tions. These different structures are combined using inheri-
tance and parameterization, inspired by object-oriented pro-
gramming and which can be seen as a notion of refinement.
Moreover, each of these structures is equipped with a car-
rier set, called representation, providing a typical algebraic
specification flavor. V. Prevosto developed a compiler [7] for
this language, able to produce OCaml code [10] for execution,
Coq code [11] for certification, and code for documentation.
D. Doligez also provided a first-order automated theorem
prover, called Zenon [2], which helps the user to complete
his/her proofs and can directly produce Coq proofs.

Focal is a tool which allows us to develop libraries with a
high degree of structure and can be seen as a front-end for
more low-level target languages, in particular OCaml and
Coq. Basically, this high degree of structure is ensured by
the use of parameterizable structures, i.e. species, which can
contain both abstract and concrete code, and which can be
refined by inheritance to obtain implementations, i.e. col-
lections. Thus, the Focal language defines a methodology of
development, which quite accords with the notion of soft-
ware release life cycle; therefore, Focal appears as a good
candidate for the development of safe and/or secure systems,
since it allows us to ease the conformance evaluation process
w.r.t. different evaluation systems imposed by various stan-
dards, like EAL for CC [18] or SIL for IEC 61508 [16]. As a
consequence, Focal has been successfully used in several sig-
nificant applications, such as Computer Algebra [8], airport
security regulations [4], or security policies [6]. All these
formalizations tend to show that Focal can be considered
as a general-purpose specification language, appropriate not
only for mathematics but also for real-world applications.
To highlight these aspects of Focal, we provide a survey of
this environment in this paper, with a complete example of
formalization and which basically allows us to reveal the ra-
tionale behind this environment. To still underline the high
level of structure of Focal specifications, this paper is also fo-
cused on the way of building a compilation scheme for Focal
which would be of high-level as well. To do so, we present
a model of Focal relying on modules, which is supposed to
be an alternative to the actual compiler using records [7],
and which can be applied both to OCaml and Coq since
these two languages offer a module system. As modules are
higher level structures than records, such a compilation al-
lows us to preserve, at a certain extent, the structure of Focal
specifications in the compiled code and then provides trace-
ability w.r.t. these specifications, which is not possible with
the model based on records where the notion of inheritance
disappears and where specifications must be flattened.

This paper is organized in two parts as follows: first, we
draw an outline of the Focal environment (Section 2), provid-
ing a complete example of formalization in particular; sec-
ond, we describe a compilation scheme from Focal to OCaml
and Coq using modules (Section 3), not only by means of an
example but also formally.

2. THE FOCAL ENVIRONMENT
In this section, we give an overview of the Focal environ-

ment. In particular, we describe the syntax of the speci-
fication language and some ideas regarding the underlying
semantics. We also provide a complete example of formal-
ization, which will be used in Section 3 when presenting the
compilation schemes informally.

2.1 Specification: Species
The first major notion of the Focal language [1, 12] is the

structure of species, which corresponds to the highest level of
abstraction in a specification. A species can roughly be seen
as a list of attributes of three kinds: the carrier type, called
representation, which is the type of the entities that are ma-
nipulated by the functions of the species, and which can be
either abstract or concrete; the functions, which denote the
operations allowed on the entities, and which can be either
declarations (when only a type is given) or definitions (when
a body is also provided); the properties, which must be veri-
fied by any further implementation of the species, and which
can be either simply properties (when only the proposition
is given) or theorems (when a proof is also provided).

The syntax of a species is the following:

species <name> =
rep [= <type >] ; (∗ representa t ion ∗)
sig <name> in <type >; (∗ dec lara t ion ∗)
l et <name> = <body>; (∗ de f i n i t i on ∗)
property <name> : <prop>; (∗ property ∗)
theorem <name> : <prop> (∗ theorem ∗)
proof : <proof>;

end

where <name> is simply a given name, <type> a type ex-
pression (mainly typing of core-ML without polymorphism
but with concrete data types), <body> a function body
(mainly core-ML with conditional, pattern-matching and re-
cursion), <prop> a (first-order) proposition and <proof> a
proof (expressed by means of a declarative proof language).
In the type language, the specific expression “self” refers to
the type of the representation and may be used everywhere
except when defining a concrete representation. In addition,
functions or properties of species or collections are referenced
using the “!” prefix, while top-level functions or properties
must be used with the “#” prefix.

As said previously, species can be combined using (mul-
tiple) inheritance, which works as expected. It is possible
to define functions that were previously only declared or to
prove properties which had no provided proof. It is also pos-
sible to redefine functions previously defined or to reprove
properties already proved. However, the representation can-
not be redefined and functions as well as properties must
keep their respective types and propositions all along the
inheritance path. Another way of combining species is to
use parameterization. Species can be parameterized either
by other species or by entities from species. If the parame-
ter is a species, the parameterized species only has access to
the interface of this species, i.e. only its abstract representa-
tion, its declarations and its properties. These two features
complete the previous syntax as follows:

species <name> (<name> i s <name>[(<pars >)] ,
<name> in <name>, . . .)

inherits <name>, <name> (<pars >) , . . . =
. . .

end

where <pars> is a list of <name>, which denotes the
names used as effective parameters. When the parameter
is a species parameter declaration, the “is” keyword is used.
When it is an entity parameter declaration, the“in”keyword
is used.

To better understand the notion of species, let us give
a small example. The selected example concerns the quite
standard implementation of stacks. In Focal, every spec-
ification starts with the following predefined root species

basic object, which provides an abstract representation in
particular:

species b a s i c o b j e c t =
rep ;
l et pr in t (x in s e l f) = ”<abst>” ;
l et parse (x in s t r in g) in s e l f =

#f o c e r ror (”not par sab l e ”) ;
end

where #foc error is the operator to signal exceptions.
Before giving the specification of stacks, we propose to

consider another predefined species allowing us to introduce
the notion of equality and which inherits from species ba-
sic object. This species is called setoid (this is typically a
non-empty set supplied with a decidable equality):

species s e to id inherits b a s i c o b j e c t =
sig equal in s e l f → s e l f → bool ;
sig element in s e l f ;
l et d i f f e r e n t (x , y) = #not b (! equal (x , y)) ;
property e q u a l r e f l e x i v e : a l l x in se l f ,

! equal (x , x) ;
theorem s ame i s no t d i f f e r en t :

a l l x y in se l f ,
! d i f f e r e n t (x , y) ↔ not (! equal (x , y))

proof : def ! d i f f e r e n t ; . . .
end

where #not b is the negation over type bool.
Using species setoid, stacks are seen as a species param-

eterized by the type of its elements, which must comply
the interface of species setoid, and also as inheriting from
species setoid (to compare not only two elements, but also
two stacks):

species s tack (e l t i s s e to id) inherits s e to id =
sig empty in s e l f ;
sig push in e l t → s e l f → s e l f ;
sig pop in s e l f → s e l f ;
sig top in s e l f → e l t ;
l et element = ! empty ;
l et is empty (s in s e l f) in bool =

! equal (s , ! empty) ;
l et has elements (s in s e l f) in bool =

#not b (! is empty (s)) ;
theorem ie empty : ! is empty (! empty)
proof : by ! e q u a l r e f l e x i v e def ! is empty ;
theorem he empty :

not (! has elements (! empty))
proof : by ! ie empty def ! has elements ; . . .

end

2.2 Implementation: Collection
The other main notion of the Focal language is the struc-

ture of collection, which corresponds to the implementation
of a specification. A collection implements a species in such
a way that every attribute becomes concrete: the represen-
tation must be concrete, functions must be defined and prop-
erties must be proved. If the implemented species is param-
eterized, the collection must also provide implementations
for these parameters: either a collection if the parameter is
a species or a given entity if the parameter denotes an en-
tity of a species. Moreover, a collection is seen (by the other
species and collections) through its corresponding interface;
in particular, the representation is an abstract data type and
only the definitions of the collection are able to manipulate
the entities of this type. Finally, a collection is a terminal
item and cannot be extended or refined by inheritance. The
syntax of a collection is the following:

col lect ion <name> implements
<name> (<pars>) = . . . end

To illustrate the notion of collection, let us consider an
implementation of our example of stacks seen previously.
Once the abstract specification of stacks given, it is possible
to provide an implementation based on lists by means of a
completely defined species, i.e. a species in which every at-
tribute is concrete. This implementation is given by species
stack list :

species s t a c k l i s t (e l t i s s e to id)
inherits s tack (e l t) =

rep = l i s t (e l t) ;
l et rec equal (x , y) = #l i s t e q (x , y) ;
l et empty = #Nil ;
l et push (e , s) = #Cons (e , s) ;
l et pop (s) =

i f ! is empty (s) then
#f o c e r ror (”empty stack ”)

else #t l (s) ;
l et top (s) =

i f ! is empty (s) then
#f o c e r ror (”empty stack ”)

else #hd (s) ;
l et is empty (s) = #l i s t e q (s , #Nil) ;
proof of e q u a l r e f l e x i v e = . . . ;
proof of ie empty = . . . ; . . .

end

where list is the concrete data type of lists, which provides
the two constructors #Nil and #Cons, and where #list eq
is the equality over type list. The “proof of” clause allows
us to provide a proof to an inherited property.

To get executable code, we can build, for instance, the
collection of stacks of integers simply implementing the pre-
vious species without needing to provide any additional at-
tribute:

col lect ion s t a c k l i s t i n t implements
s t a c k l i s t (i n t s) = end

where ints is the collection of integers which implements
species setoid.

2.3 Certification: Proving with Zenon
The certification of a Focal specification is ensured by the

possibility of proving properties through a declarative proof
language and using Zenon [2], a first-order automated the-
orem prover, which is the reasoning support of Focal. A
remarkable feature of Zenon is that it is a certifying auto-
mated theorem prover, in the sense that it is able to produce
proofs. In particular, Zenon can directly generate Coq proofs
which can be reinserted in the Coq specifications produced
by the Focal compiler and fully verified by Coq.

2.4 Further Information
For additional information regarding Focal and its appli-

cations, the reader can refer to [1, 12]. It should also be
noted that a new version of the Focal compiler, called Focal-
ize, has been recently released and is available at [13].

3. COMPILATION USING MODULES
In this section, we present a compilation scheme from Fo-

cal to OCaml and Coq, not only through a complete example
but also providing a formal description. This compilation
scheme is based on modules and appears as an alternative
to the actual compiler using records [7], which allows us to
preserve the structure of Focal specifications in the compiled
code and therefore provides traceability w.r.t. these speci-
fications. An implementation of this compilation scheme is
in progress.

3.1 A Complete Example
The considered example concerns the implementation of

stacks introduced in Section 2. In the following, the ba-
sic idea of the compilation for OCaml and Coq is that a
species corresponds to a functor parameterized by some at-
tributes still abstract and a collection corresponds to a mod-
ule resulting from the application of a functor representing
the implemented species to modules representing the actual
parameters provided to the species. We suppose that the
reader is familiar with OCaml and Coq, and with their re-
spective module systems in particular; otherwise, the reader
can refer to [10, 11] for more information regarding these
two systems.

3.1.1 Representation
The first species to be compiled is the root species ba-

sic object. In OCaml, modules cannot be partially defined,
contrary to Focal species where not only representations can
be abstract, but also functions or properties. To keep this
abstraction in OCaml, the idea is to create a functor pa-
rameterized by the attributes still abstract (typically, rep-
resentations and functions). Thus, the considered species is
compiled to the following functor Basic object :

module type BASIC OBJECT =
sig

type s e l f
val pr in t : s e l f → s t r in g
val parse : s t r in g → s e l f

end

module Bas ic ob j ec t
(Abs : sig type s e l f end) : BASIC OBJECT
with type s e l f = Abs . s e l f =

struct
type s e l f = Abs . s e l f
l et pr in t (x : s e l f) = ”<abst>”
l et parse (x : s t r in g) : s e l f =

f a i l w i t h ”not par sab l e ”
end

In Coq, the module system offers a quite mixin-oriented
approach, in the sense that a module and even a module
type may contain abstract and defined attributes (typically,
declarations and definitions, but also axioms and theorems).
This approach is probably one of the most appropriate to
model the semantics of Focal and this allows us to get rid
of this notion of module including the abstract attributes
(module Abs in OCaml), and which appears as a parameter
of the functor representing the compiled species. The rep-
resentation, if abstract, must always be a parameter, but
does not need to be included in the module signature rep-
resenting the interface of the species as required by OCaml
(see module type BASIC OBJECT), since we can use a pa-
rameterized module signature, which is a feature recently
provided by Coq. The Coq compilation is the following:

Module Type REP.
Parameter t : Set .

End REP.

Module Type BASIC OBJECT (Se l f : REP) .
Parameter pr in t : Se l f . t → s t r in g .
Parameter parse : s t r in g → Se l f . t .

End BASIC OBJECT .

Module Bas ic ob j ec t (Se l f : REP) .
Definition pr in t (x : Se l f . t) : s t r in g :=

”<abst>” .
Definition parse (x : s t r in g) : Se l f . t :=

f o c e r ror Se l f . t ”not par sab l e ” .
End Bas ic ob j ec t .

where foc error is a function encoding the corresponding
exception operator.

In the following, we focus on the functor corresponding to
the compiled species (typically, Basic object in the previous
example), and we do not provide the module signature rep-
resenting the interface of this species (i.e. BASIC OBJECT
in the previous example).

3.1.2 Inheritance
In the example of stacks, inheritance occurs when we in-

troduce species setoid. The OCaml compilation of this in-
heritance is made by means of the inclusion of a module
which results from the instantiation of the functor corre-
sponding to the inherited species. The actual parameter of
this functor is a module containing the attributes which are
abstract in the inherited species and which may be either
still abstract or concrete in the sub-species. In our case,
this module only includes the representation, which is still
abstract. The compilation is as follows:

module Setoid
(Abs : sig

type s e l f
val equal : s e l f → s e l f → bool
val element : unit → s e l f

end) : SETOID with type s e l f = Abs . s e l f =
struct

include Bas ic ob j ec t
(struct type s e l f = Abs . s e l f end)

l et equal = Abs . equal
l et element = Abs . element
l et d i f f e r e n t x y = not (equal x y)

end

The Coq compilation of this inheritance is rather simi-
lar and is also realized through the inclusion of the module
which corresponds to the instantiation of the functor repre-
senting the inherited species. As seen previously, this instan-
tiation only concerns the representation. The compilation is
the following:

Module Setoid (Se l f : REP) <: SETOID (Se l f) .
Include Bas ic ob j ec t (Se l f) .
Parameter equal : Se l f . t → Se l f . t → bool .
Parameter element : Se l f . t .
Definition d i f f e r e n t (x y : Se l f . t) : bool :=

negb (equal x y) .
Axiom e q u a l r e f l e x i v e : f o ra l l x : Se l f . t ,

I s t r u e (equal x x) .
Theorem s ame i s no t d i f f e r en t :

f o ra l l x y : Se l f . t ,
I s t r u e (d i f f e r e n t x y) ↔
I s t r u e (negb (equal x y)) .

Proof
End Setoid .

The next species to be compiled is species stack. As seen
previously, in OCaml, the inheritance is realized through the
inclusion of a module representing the application of the
functor corresponding to the inherited species to a module
containing the instantiations of the attributes of the inher-
ited species previously abstract. Thus, the module of inher-
itance depends on the actual module of abstractions. How-
ever, some other dependencies may appear. For example, it
is possible to concretize a function previously abstract us-
ing a function which is added in the considered species, as
for function element in species stack which is defined us-
ing function empty ; this implies that the actual module of
abstractions may depend on the functions of the compiled
species. In addition, a function which is added in the con-
sidered species, may depend on a function coming from the
inheritance, as for function is empty in species stack which

is defined using function equal coming from species setoid ;
this means that the functions of the compiled species may
depend on the module of inheritance. Thus, we have mutual
dependencies between the module of inheritance, the actual
module of abstractions, and the module gathering the func-
tions of the compiled species. As a consequence, we need to
introduce a block of recursive modules as follows:

module Stack (Elt : SETOID)
(Abs : sig

type s e l f
val equal : s e l f → s e l f → bool
val empty : unit → s e l f
val push : Elt . s e l f → s e l f → s e l f
val pop : s e l f → s e l f
val top : s e l f → Elt . s e l f

end) : STACK with type e l t = Elt . s e l f
and type s e l f = Abs . s e l f =

struct
type e l t = Elt . s e l f
type s e l f = Abs . s e l f
module rec M : sig . . . end = struct

let empty = Abs . empty
l et push = Abs . push
l et pop = Abs . pop
l et top = Abs . top
l et element = empty
l et is empty s = I . equal s (empty ())
l et has elements s = not (is empty s)

end
and Abs I : sig . . . end = struct

type s e l f = Abs . s e l f
l et equal = Abs . equal
l et element = M. element

end
and I : SETOID with type s e l f = s e l f =

Setoid (Abs I)
l et pr in t = I . pr in t
l et parse = I . parse . . .
l et empty = M. empty
l et push = M. push . . .

end

where I is the module of inheritance, Abs I the actual
module of abstractions, and M the module of the functions
of the compiled species. It should be noted that the previous
code does not use the inclusion mechanism of OCaml, since
we have to include definitions both from modules I and M,
which may overlap.

In Coq, the absence of the module of abstractions allows
us to avoid the use of a block of recursive modules. The
compilation is made by means of a selective inclusion of the
module corresponding to the instantiation of the inheritance
functor, and which consists in only including inherited at-
tributes which are not defined or redefined in the compiled
species. The attributes added in the compiled species are
then also included. The compiled code is the following:

Module Stack (Elt : REP) (Std : SETOID (Elt))
(Se l f : REP) <: STACK (Elt) (Std) (Se l f) .
Module I := Setoid (Se l f) .
Definition pr in t := I . pr in t .
Definition parse := I . parse .
Definition equal := I . equal .
Definition d i f f e r e n t := I . d i f f e r e n t .
Definition e q u a l r e f l e x i v e :=

I . e q u a l r e f l e x i v e .
Definition s ame i s no t d i f f e r en t :=

I . s ame i s no t d i f f e r en t
Parameter empty : Se l f . t .
Parameter push : Elt . t → Se l f . t → Se l f . t .
Parameter pop : Se l f . t → Se l f . t .
Parameter top : Se l f . t → Elt . t .
Definition element : Se l f . t := empty .
Definition is empty (s : Se l f . t) :=

equal s empty .
Definition has elements (s : Se l f . t) :=

negb (is empty s) .

Theorem ie empty : I s t r u e (is empty (empty)) .
Proof
Theorem he empty :

I s t r u e (negb (has elements (empty))) .
Proof

End Stack .

where I corresponds to the module of inheritance. As for
OCaml, this code does not use the primitive inclusion of Coq.

3.1.3 Late Binding
Late binding can be illustrated by means of the compila-

tion of species stack list. To compile this species in OCaml,
we must first notice that function is empty is redefined (this
new definition is semantically the same than previously and
is actually provided just for the purpose of presenting a case
of redefinition). This redefinition implies that every func-
tion referring to is empty cannot be inherited as it refers to
the former definition of is empty and not to the latter. For
example, this is the case of function has elements defined
in species stack. To solve this problem without having to
repeat the code of every function referring to is empty, we
introduce the notion of function generator. A function gen-
erator is a function based on the previous defined function
where every reference to another function of the species has
been abstracted. The corresponding defined function is then
obtained applying its function generator to the actual func-
tions of the species that have been abstracted in the function
generator. For each function requiring the use of a function
generator, the corresponding function generator is added to
the module representing the compiled species and can then
be reused later by inheritance. Thus, the compilation is
realized as follows:

module S t a c k l i s t (Elt : SETOID) :
STACK LIST with type e l t = Elt . s e l f

and type s e l f = Elt . s e l f l i s t =
struct

type e l t = Elt . s e l f
type s e l f = e l t l i s t
l et pop gen f s =

i f f s then f a i l w i t h ”empty stack ”
else Lis t . t l s

l et top gen f s =
i f f s then f a i l w i t h ”empty stack ”
else Lis t . hd s

module rec M : sig . . . end = struct
let equal x y = (x = y)
l et empty () = []
l et push e s = e : : s
l et pop = pop gen M. is empty
l et top = top gen M. is empty
l et is empty s = (s = [])

end
and Abs I : sig . . . end = struct

type s e l f = e l t l i s t
l et equal = M. equal
l et empty = M. empty
l et push = M. push
l et pop = M. pop
l et top = M. top

end
and I : STACK with type e l t = e l t

and type s e l f = s e l f = Stack (Elt) (Abs I)
and Gen : sig . . . end = struct

let has elements =
I . has e lements gen M. is empty

end
let pr in t = I . pr in t
l et parse = I . parse . . .
l et equal = M. equal
l et empty = M. empty . . .
l et has elements = Gen . has elements
l et has e lements gen = I . has e lements gen

end

where Gen is a module where inherited and defined func-
tions are updated using their associated function generators.
This module is introduced in the block of recursive modules,
as updating inherited functions requires the use of their in-
herited function generators (from module I) and as func-
tions that are added in the compiled species (from module
M) may also require the use of updated functions. It should
also be noted that function generators associated with added
functions of the considered species, like pop gen for example,
are not included in the block of recursive modules as they
have no dependency w.r.t. other functions, whereas other
function generators associated with inherited functions, e.g.
has elements gen, are inherited as regular functions.

In Coq, the redefinition of function is empty poses the
same problem with wider influences. In the same way, we
have to use function generators for defined functions using
is empty, as for function has elements for instance. How-
ever, the dependencies w.r.t. is empty also concerns prop-
erties, whose the statements as well as the proofs may de-
pend on this function; this is the case of theorem ie empty,
for example. Therefore, we have to introduce the notion
of property generator, which actually consists of two gener-
ators: a statement generator and a proof generator (if the
property is a theorem). As for function generators, these two
generators are functions which make an abstraction of the
functions, but also of the properties, respectively involved in
the statement and the proof of a property. For proof gener-
ators, the abstraction of a function is made only if the proof
does not depend on the definition of this function, as the
proof is invalidated if this function is redefined; for instance,
this is the case of ie empty which must be reproved due to
the redefinition of is empty. As in OCaml, all the genera-
tors are included in the module representing the compiled
species. Thus, we obtain the following compilation:

Module S t a c k l i s t (Elt : REP)
(Std : SETOID (Elt)) <:
STACK LIST (Elt) (Std) .
Module Se l f := L i s t o f (Elt) .
Module I := Stack (Elt) (Std) (Se l f) .
Definition pr in t := I . pr in t .
Definition parse := I . parse .
Definition element := I . element .
Definition has e lements gen :=

I . has e lements gen
Definition equal (s1 s2 : Se l f . t) : bool :=

p ro j 1 s i g (boo l o f sumboo l
(l i s t e q d e c e l t d e c s1 s2)) .

Definition empty : l i s t E l t . t := n i l .
Definition is empty (s : Se l f . t) : bool :=

p ro j 1 s i g (boo l o f sumboo l
(l i s t e q d e c e l t d e c s n i l)) .

Definition push (x : Elt . t) (s : Se l f . t) :
Se l f . t := x : : s .

Definition pop gen (f : Se l f . t → bool)
(s : Se l f . t) :=
i f (f s) then

f o c e r ror (Se l f . t) ”empty stack ”
else (t a i l s) .

Definition top gen (f : Se l f . t → bool)
(s : Se l f . t) :=
i f (f s) then

f o c e r ror (Elt . t) ”empty stack ”
else (hd s) .

Definition pop := pop gen is empty .
Definition top := top gen is empty .
Definition has elements :=

I . has e lements gen is empty .
Definition ie empty gentyp :=

I . ie empty gentyp .
Theorem ie empty :

ie empty gentyp empty is empty .
Proof

Definition he empty gentyp :
f o ra l l (e : Se l f . t) (f : Se l f . t → bool) ,
I s t r u e (negb (f e)) := I . he empty gentyp .

Definition he empty genthm :
f o ra l l (e : Se l f . t) (i e : Se l f . t → bool)
(i ee : ie empty gentyp e ie) ,
hs empty gentyp e (has e lements gen ie) :=
I . he empty genthm .

Definition he empty :
he empty gentyp empty has e lements :=
he empty genthm empty is empty ie empty

End S t a c k l i s t .

where List of is a functor which allows us to build a con-
crete representation module based on lists. As in OCaml, de-
fined functions introduce function generators, like pop gen,
whereas the function generators of inherited functions are
also inherited, like has elements gen. Regarding property
generators, we can see how the two generators of he empty,
i.e. statement generator he empty gentyp and proof gener-
ator he empty genthm, can be used to inherit properly the
statement and the proof of he empty. For ie empty, as the
inherited proof is invalidated and must be rebuilt, only the
corresponding statement generator ie empty gentyp can be
used.

3.1.4 Collections
In our example, an implementation is provided by means

of collection stack list int, which represents the stacks of
integers. In OCaml, this collection is a module resulting
from the application of the functor corresponding to species
stack list to the module representing collection ints. This
compilation is realized as follows:

module S t a c k l i s t i n t = S t a c k l i s t (In t s)

where Ints is the module corresponding to collection ints.
In Coq, the compilation is similar, but as seen previously,

we have to additionally provide a module which is supposed
to be the representation of the collection also supplied as
parameter. The code is the following:

Module S t a c k l i s t i n t :=
S t a c k l i s t (Rep ints) (In t s) .

where Ints is the module representing collection ints, and
Rep ints the module corresponding to the representation of
this collection.

3.2 Formal Description
The previous example gives an idea of the considered com-

pilation schemes. In this subsection, we aim to formally de-
scribe these compilation schemes in the general case. Due to
space restrictions, we only deal with the compilation schemes
of a species, as it consists of the main difficult point of the
compilation. For the same reasons, we also do not deal with
the corresponding proofs of correctness.

Given a species S, which has the following general form:
S = species s (P) inherits I = rep; M; R; end, where
s denotes the name of the species, P the list of parame-
ters, I = S1 . . . Sm the list of inherited species of the form
Si = si(a1, . . . , ani) where si is a species and aj with
j = 1 . . . ni are actual parameters of si, rep the representa-
tion, M = φ1 . . . φp the list of functions, and R = ψ1 . . . ψq

the list of properties. Given a typing context Γ in which
S is well typed, JSKΓ denotes the compilation of S and is
given by Figures 1 and 2 for OCaml and Coq. Regarding
these translations, we do not provide all the details and in
OCaml, we mainly focus on the construction of the block of

recursive modules, while in Coq, we essentially concentrate
on the code generation for properties. In both compilations,
we first have the signature associated with the functor repre-
senting the species JSKsig

Γ and then the functor itself JSKmod
Γ .

In Coq, preceding the previous signature and functor, we
also find two modules JrepKconc

Γ and JPKent
Γ , corresponding

respectively to the representation (if concrete) and to the
entity parameters.

4. CONCLUSION
In this paper, we have introduced the Focal environment,

which allows us to build certified components using theorem
proving. The language supported by this environment is
object-oriented, and inheritance provides a suitable notion of
refinement, going incrementally from abstract specifications
to concrete implementations. In addition, inheritance and
parameterization offer the capability of creating higher or-
der structures, which can be therefore directly reused and ex-
tended. To highlight these features, we have also described a
compilation scheme of Focal specifications based on modules
and able to generate both OCaml and Coq codes. Thanks
to modules, which are high level structures, this scheme can
preserve the structure of specifications and ensures a certain
traceability. An implementation of this scheme is in progress
in the framework of the Focal compiler and should allow us
to assess the feasibility of such an approach in practice.

5. REFERENCES
[1] P. Ayrault, M. Carlier, D. Delahaye, C. Dubois,

D. Doligez, L. Habib, T. Hardin, M. Jaume,
C. Morisset, F. Pessaux, R. Rioboo, and P. Weis.
Trusted Software within Focal. In Computer &
Electronics Security Applications Rendez-Vous
(C&ESAR), pages 142–158, Rennes (France), Dec.
2008.

[2] R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An
Extensible Automated Theorem Prover Producing
Checkable Proofs. In Logic for Programming Artificial
Intelligence and Reasoning (LPAR), volume 4790 of
LNCS/LNAI, pages 151–165. Springer, Oct. 2007.

[3] Carnegie Mellon University. The Million Book Project,
Dec. 2001. http://www.rr.cs.cmu.edu/mbdl.htm.

[4] D. Delahaye, J.-F. Étienne, and V. Viguié
Donzeau-Gouge. Certifying Airport Security
Regulations using the Focal Environment. In Formal
Methods (FM), volume 4085 of LNCS, pages 48–63,
Hamilton, Ontario (Canada), Aug. 2006. Springer.

[5] Google. The Google Book Search, Oct. 2004.
http://books.google.com/.

[6] M. Jaume and C. Morisset. A Formal Approach to
Implement Access Control. Journal of Information
Assurance and Security (JIAS), 1(2):137–148, June
2006.

[7] V. Prevosto. Conception et implantation du langage
Foc pour le développement de logiciels certifiés. PhD
thesis, Université Pierre et Marie Curie (Paris 6),
Sept. 2003.

[8] R. Rioboo. Programmer le Calcul Formel : des
algorithmes à la sémantique. Habilitation à diriger des
recherches, Université Pierre et Marie Curie (Paris 6),
Dec. 2002.

[9] P. Sojka, editor. Towards a Digital Mathematics
Library (DML). Masaryk University, July 2008.

[10] The Caml Development Team. Objective Caml,
version 3.11.0. INRIA, Dec. 2008.
http://caml.inria.fr/.

[11] The Coq Development Team. Coq, version 8.2. INRIA,
Feb. 2009. http://coq.inria.fr/.

[12] The Focal Development Team. Focal, version 0.3.1.
CNAM, INRIA, and LIP6, May 2005.
http://focal.inria.fr/.

[13] The Focalize Development Team. Focalize,
version 0.1 RC 1. CNAM, INRIA, and LIP6, Apr. 2009.
http://focalize.inria.fr/.

[14] The Project Gutenberg, 1971.
http://www.gutenberg.org.

[15] The Internet Archive, 1996. http://www.archive.org.

[16] The International Electrotechnical Commission.
Functional Safety of Electrical/Electronic/
Programmable Electronic Safety-Related Systems
(IEC 61508), Jan. 2005. http://www.iec.ch/.

[17] The Mathematical Knowledge Management (MKM)
Interest Group, 2001. http://www.mkm-ig.org/.

[18] The Members of the Common Criteria Recognition
Arrangement. Common Criteria for Information
Technology Security Evaluation, version 3.1, Sept.
2007. http://www.commoncriteriaportal.org/.

[19] The MoWGLI Project, 2002.
http://mowgli.cs.unibo.it/.

[20] The OpenMath Society. OpenMath Version 2.0, June
2004. http://www.openmath.org/.

http://www.rr.cs.cmu.edu/mbdl.htm
http://books.google.com/
http://caml.inria.fr/
http://coq.inria.fr/
http://focal.inria.fr/
http://focalize.inria.fr/
http://www.gutenberg.org
http://www.archive.org
http://www.iec.ch/
http://www.mkm-ig.org/
http://www.commoncriteriaportal.org/
http://mowgli.cs.unibo.it/
http://www.openmath.org/

JSKΓ = JSKsig
Γ JSKmod

Γ

JSKmod
Γ =
module mod(s) JPKparam

Γ
(Abs : sig

JrepKabs
Γ,S

Jabs(S)Kabs
Γ,rep,P

end) :
sig(s) with JrepKmod

Γ JPKwith
Γ =

struct
JPKmod

Γ JrepKmod
Γ,S

JMKgen
Γ JMKmod

Γ

JIKmod
Γ,M JIKgen

Γ

JIKinc
Γ,M JMKinc

Γ
end

JMKgen
Γ = Jφ1Kgen

Γ . . . JφnKgen
Γ

JMKmod
Γ =

module rec M : sig

Jφ1Ksig
Γ . . . JφnKsig

Γ
end = struct

Jφ1Kmod
Γ . . . JφnKmod

Γ
end

JIKmod
Γ = JS1Kmod

Γ . . . JSnKmod
Γ

JSiKmod
Γ =
and Absi : sig

JrepKabs
Γ,Si

Jabs(Si)K
sig
Γ

end = struct
JrepKabs-mod

Γ,Si
Jabs(Si)Kabs-mod

Γ

end
and Si : sig(si) with JrepKmod

Γ JSiKwith
Γ,P =

mod(si) JSiK
param
Γ

JIKgen
Γ,M =

and Gen : sig

JSnKgen-sig
Γ,M . . . JS1Kgen-sig

Γ,M
end = struct

JSnKgen-mod
Γ,M . . . JS1Kgen-mod

Γ,M
end

JSiK
gen-mod
Γ,M = Jfun(Si)K

gen-mod
Γ,M

= Jφ1Kgen-mod
Γ,M . . . JφnKgen-mod

Γ,M

JφiK
gen
Γ =


let m gen = Jdep(m)Kmod

Γ JbodyKΓ,
if φi = let m in τ = body;
and dep(m) 6= ∅

∅, otherwise

Jdep(m)Kmod
Γ =


∅, if n = 0

fun m1 →
J(m2 : τ2) . . . (mn : τn)Kmod

Γ ,
otherwise

JφiKmod
Γ =



let m = Abs.m, if φi = sig m in τ ;

let m = JbodyKΓ,
if φi = let m in τ = body;
and dep(m) = ∅

let m = m gen m1 . . .mn,
if φi = let m in τ = body;
and dep(m) = {(m1 : τ1), . . . , (mn : τn)}

Jabs(Si)Kabs-mod
Γ = Jφ1Kabs-mod

Γ . . . JφnKabs-mod
Γ

JφiKabs-mod
Γ =



let m = M.m, if φi ∈ M
let m = Abs.m, if φi /∈ M

and @j = 1 . . . n s.t.
φi = let m in τ = body;∈ fun(Sj)

let m = Sj .m, if φi /∈ M
and ∃j = 1 . . . n s.t.
φi = let m in τ = body;∈ fun(Sj)
and ∀ k > j, φi /∈ fun(Sk)

JrepKabs-mod
Γ,Si

=



type self = Abs.self,
if rep(Si) = ∅
and rep(S) = ∅

type self = JτKΓ,
if rep(Si) = ∅
and rep(S) = τ

∅, otherwise

JφiK
gen-mod
Γ,M =



let m = m gen X1.m1 . . . Xn.mn,
if φi /∈ M∪ fun(Sj), j = n . . . i+ 1
dep(m) = {(m1 : τ1), . . . , (mn : τn)}
and Xi ∈ Gen,M, Sj s.t. mi ∈ Xi

and if Xi = Sj then mi /∈ Gen,M, Sk

s.t. k > j

∅, otherwise

where:
sig(s) returns a module signature name from species name s.
mod(s) returns a module name from species name s.
rep(S) returns the representation type τ of species S if it is concrete, ∅ otherwise.
fun(S) returns the set of functions φi of species S.
abs(S) returns the set of functions φi of species S which are declared.
dep(m) returns the set of couples (mi : τ i), where mi is a function and τ i its type,

and on which the function of name m depends.

Figure 1: From Focal to OCaml

JSKΓ =


JrepKconc

Γ
JPKent

Γ

JSKsig
Γ

JSKmod
Γ

JSKmod
Γ =
Module mod(s) JrepKparam

Γ JPKparam
Γ <:

sig(s) JrepKarg
Γ,S JPKarg

Γ .

JIKmod
Γ,M,R

JMKmod
Γ

JI,MKgen
Γ,<dep

JRKmod
Γ

JI,RKgen
Γ,<dep

End mod(s).

JIKmod
Γ,M,R = JS1 . . . SnKmod

Γ,M,R

= JS1Kmod
Γ,M,R,{S2,...,Sn} . . . JSnKmod

Γ,M,R,∅

JSiKmod
Γ,M,R,X =

Module Si := mod(si) JrepKarg
Γ,Si

Ja1 . . . aniK
arg
Γ .

Jfun(Si)Kinh
Γ,M,X

Jprop(Si)Kinh
Γ,R,X

Jprop(Sk)Kinh
Γ,R,X = Jψ1 . . . ψnKinh

Γ,R,X

= {JψiKinh
Γ,Sk

| ψi /∈ R ∪X}

JψiKinh
Γ,Sk

=

{
Definition x := Sk.x., if dep(x) = ∅
JψiK

gen-typ
Γ,Sk

JψiK
gen-thm
Γ,Sk

, otherwise

JψiK
gen-typ
Γ,Sk

=

{
Definition x gentyp := Sk.x gentyp., if deptyp(x) 6= ∅
∅, otherwise

JψiK
gen-thm
Γ,Sk

=

{
Definition x genthm := Sk.x genthm., if ψi = theorem x : prop proof : proof ;
∅, otherwise

JRKmod
Γ = Jψ1Kmod

Γ . . . JψnKmod
Γ JψiKmod

Γ =

{
JψiK

no-dep
Γ , if dep(x) = ∅

JψiK
dep
Γ , otherwise

JψiK
no-dep
Γ =


Axiom x : JpropKΓ. , if ψi = property x : prop;

Theorem x : JpropKΓ. Proof . Jproof KΓ Qed.,
if ψi = theorem x : prop proof : proof ;

JψiK
dep
Γ =


Definition x gentyp (x1 : Jτ1KΓ) . . . (xn : JτnKΓ) := JpropKΓ. ,

if ψi = property x : prop; and deptyp(x) = {(x1 : τ1), . . . , (xn : τn)}
Definition x genthm (x1 : Jτ1KΓ) . . . (xn : JτnKΓ) := Jproof KΓ. ,

if ψi = theorem x : prop proof : proof ; and depthm (x) = {(x1 : τ1), . . . , (xn : τn)}

JI,RKgen
Γ,<dep

= {JψiK
gen
Γ | ψi ∈ prop(Sj)\R and ψi /∈ Sk with k > j, or ψi ∈ R, dep(x) 6= ∅}

JψiK
gen
Γ =


Axiom x : x gentyp x1 . . . xn.,

if ψi = property x : prop; and deptyp(x) = {(x1 : τ1), . . . , (xm : τm)}
Definition x : x gentyp x1 . . . xm := x genthm y1 . . . yn.,

if ψi = theorem x : prop proof : proof ; and deptyp(x) = {(x1 : τ1), . . . , (xm : τm)},
depthm (x) = {(y1 : τ1), . . . , (yn : τn)}

where :
sig(s) returns a module signature name from species name s.
mod(s) returns a module name from species name s.
fun(S) returns the set of functions φi of species S.
prop(S) returns the set of properties ψi of species S.
deptyp(x) returns the set of couples (xi : τ i), where xi is either a function or a property

and where τ i is its type, and on which the statement of property of name x depends.
depthm (x) returns the set of couples (xi : τ i), where xi is either a function or a property

and where τ i is its type, and on which the proof of property of name x depends,
its possible definition excluded.

dep(x) = deptyp(x) ∪ depthm (x).
<dep sorts the set of properties from JI,MKgenΓ,<dep

s.t. ∀ j > i, ψj /∈ dep(ψi).

Figure 2: From Focal to Coq

	Introduction
	The Focal Environment
	Specification: Species
	Implementation: Collection
	Certification: Proving with Zenon
	Further Information

	Compilation using Modules
	A Complete Example
	Representation
	Inheritance
	Late Binding
	Collections

	Formal Description

	Conclusion
	References

